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1. Introduction 

Among the many contributions that Roger Penrose has made to the field 
of General Relativity, the use of non-locality and self-duality have played 
a major, though probably not fully appreciated, role in the development of 
the field [l ]. Ashtekar's formulation of canonical gravity [2] and subsequent 
developments are based in an essential way on the idea of self-duality while 
the theory of the non-linear graviton, H-space [3] and the present work are 
based on both non-locality and self-duality. The work reported here thus owes 
a major debt to Roger's ideas and encouragement. We take this opportunity 
to thank Roger for the years of collaboration and deep friendship. 

In this reformulation of General Relativity [4] (a generalization of H-space 
ideas) two non-local variables, the holonomy operator associated with specific 
closed curves (whose definition is based on duality) and the light cone cut 
function of null infinity are used as the basic variables. They replace the usual 
metric and connection of the space-time, which become derived concepts. 

A purpose of this note is, first of  all, to present an informal review of 
this approach, trying to avoid technical details. We also wish to present some 
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further developments and a new point of view towards this work. 
In section 2 we review the main results of our reformulation, giving, in 

symbolic form, the coupled non-local field equations for the holonomy operator 
and cut function. (An outline of the derivation of  these equations is given in 
appendix A while the full set of equations is given in appendix B.) We then 
raise the question whether it is possible, by increasing the differential order 
of the equations, to eliminate the holonomy operator from the equations and 
obtain a single higher-order equation just for the cut function in terms of the 
free data, which would be equivalent to the (conformal) Einstein equations 
[5]. 

In section 3 a perturbation procedure to obtain this equation (which will be 
referred to as the Light Cone Cut Equation, LCCE) is discussed. In the linear 
approximation, the resulting LCCE is found and shown to be the same as an 
equationsuggested by Mason [6]. The LCCE is also extended to second order 
in the perturbation expansion where we can identify the interaction between 
the self-dual and anti-self-dual parts of the free data. Finally, we argue from 
the perturbation expansion that the full LCCE in principle does exist. 

In section 4 we use the same perturbation expansion to argue that the 
solution space of  the LCCE is four dimensional, i.e., that the LCCE, an 
equation for local cross-sections of a line bundle over the sphere, defines 
via the space of solutions a four-dimensional manifold, the space-time itself. 
From these local cross-sections a (conformal) metric on this manifold can be 
obtained. 

2. The non-local field equations 

We first give a brief discussion of our earlier work on encoding the conformal 
properties of an Asymptotically Simple Space-Time (ASST) in terms of a 
single non-local function, the light cone cut function [7]. 

We begin with an ASST, the physical manifold M and its conformal com- 
pletion, i.e., M plus the conformal boundary 77 + U 27-. Though the radiation 
data for the ASST could be chosen on either 27+ or 77-, for simplicity we will 
make the definite choice 27+. 

On 27+ we choose the usual "Bondi coordinates", (u, (, (-), where u labels 
the Bondi slicing of 77 + and the complex stereographic coordinates ((, ~-) label 
the sphere of  null generators. Any two-surface on 27 + is given by some function 
u = f ((, (-) and will be referred to as a "cut" of 77 + or simply as a "cut". We 
now consider any interior point of M, with local coordinates x a, and construct 
its null cone Nx. The intersection of  Nx with 27 + is a preferred cut, Cx, which 
we refer to as a "light cone cut". It will be locally described by a function, the 
"light cone cut function", associated with the point x a, i.e., 
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u = ( l )  

The function Z plays a dominant and critical role for us. First of  all it 
allows us to "find" the points on 2 .+ that are connected, via null geodesics, 
to x a. Second, it is the knowledge of the cut or cut function that determines 
the apex, x a, of the light cone, i.e. the light cone cuts determine the space- 
time points. Most important is the fact that knowledge of Z is equivalent 
to knowledge of the conformal structure of M. This can be seen from the 
following argument: Note that u = Z (x a, (, ~-) has two meanings: the one just 
given, C x  = Nx 02.  +, i.e. the light cone cuts, and the second, which arises 
from holding (u,(,(-) constant but varying the x a, yielding a characteristic 
surface, i.e. all points x a that get to (u, (, (-) on 2. + via null geodesics. This 
surface is the past cone of  the point (u, (, (-). Taking the gradient of  Z at a 
fixed point, x a, we obtain, by definition, a null covector 

ea = 

By letting (¢, ~-) range over the sphere, the null covector ranges over the 
cone of null "directions" at x a, thus yielding the conformal structure. From 
Z, one can explicitly construct the conformal metric [7]. 

It had long been our expectation that a simple equation for Z of  the form 

~2Z = A (Z, ~Z, ~Z, ~ Z ,  (, ~, data) (2) 

could be found that would encode the conformal structure of  the vacuum 
Einstein equations. (The characteristic data for general relativity are given by 
the Bondi shear, a e ,  a complex function on Z +.) This expectation was based 
on the observation that many vacuum space-times could be found from an 
equation of  that form, e.g., the regular solutions of  

~2Z = 0 (3) 

yield the Minkowski space light cone cuts and the regular solutions of  the 
"good cut equation" [3] 

O2Z = ae(Z,( , ( - ) ,  (4) 

with trB (U, (, (-) the free Bondi data, yield the cuts of  H-spaces. 
Note that (3) and (4) are equations for the angular behaviour of  the function 

Z; no mention is made of space-time points. The idea is that the solutions 
are to depend on a four-parameter set, i.e., four constants of integration x a, 

which d e f i n e  a four-manifold, the space-time itself. The functional form of 
Z evaluated at the point x a yields the conformal metric. After considerable 
effort, we no longer believe that an equation of  the form (2) can be found for 
general vacuum space-times. On the other hand, two alternatives to (2) have 
arisen. 
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(i) Lionel Mason has argued, from the vanishing of the Bach tensor [6], 
that instead of (2) there should be a single fourth-order equation, the Light 
Cone Cut Equation (LCCE), of the form 

~ 2 ~ 2 Z  = F [Z, data]. (5) 

This is a generalization of (2), which should encode the conformal vacuum 
Einstein equations. We emphasize that the form of F is not known at the 
present time. From general considerations it is, however, surmised that it will 
be a universal non-local functional of  both Z and the characteristic data, the 
Bondi shear aa (u, (, (-). Again the solution space of the LCCE is to be a four- 
parameter set, the space-time manifold itself with the solutions yielding the 
conformal metric on the manifold. We will return to this issue in section 4. 

(ii) A second approach to the generalization of (2) came with the realization 
[4] that by introducing a set of auxiliary variables (namely the components 
of the holonomy operator, H, associated with a special set of closed paths) 
we could write a pair of  coupled angular differential equations that encoded 
the full vacuum Einstein equations, including the conformal scaling. Though 
in detail they are reasonably complicated (see appendix B), symbolically they 
have the simple form 

~2Z = L [ Z , H ,  data], 

~JH = K [ Z , H ,  data]. 

(6) 

(7) 

The point of view towards (6) and (7) is to be similar to that of (5) in that 
they are both angular differential equations whose solution space defines the 
manifold and whose solutions Z and H yield the vacuum Einstein metrics. (Z 
by itself only yields the conformal metric but with H the scaling is determined. ) 
An immediate question arises: what relationship, if any, is there between (5) 
and (6), (7)? One would expect, since Z encodes the conformal metric, that 
by taking two angular derivatives of (6), H could be eliminated via (7) and 
an equation of the form (5) obtained. This would be an important result since 
it would yield the explicit form of F.  Though we believe that this calculation 
can be explicitly carried out, we, nevertheless, have not yet succeeded in doing 
so - the calculations being simply too complicated. However, a perturbative 
procedure to obtain F is given in section 3. We plan to return to this issue in 
the future. 

3. Perturbations 

It is the purpose of this section to take the explicit form, from appendix 
B, of the symbolic equations (6) and (7), expand them in powers of a small 
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parameter e which measures the deviation from flatness and eliminate H from 
the equations term by term leaving finally an equation only for Z,  i.e. the 
LCCE. From the assumption that e enters as a multiplicative factor of  the 
Bondi shear, . i.e. via GaB, it becomes clear that the expansions have the form 

i " eel ,  ~ e2e~a + . . . ,  Z = Z 0 + e Z  1 + e2Z2 + . . . ,  e a = e~a + + (8) 

H =  eHn + ~2H2+ "" ,  h = e2h2 + £3h 3 + . - - .  (9) 

By direct substitution of (8) and (9) into (B.II)  we have as the only 
zeroth-order term 

~2Z0, a = 0 ---+ ~2Z 0 = 0. (10) 

Applying 8 twice yields the zeroth-order LCCE, 

whose solution is 

with 

goa ( ¢, -~) - 1 
2v~P 

~2~2Z 0 = 0, 

Z 0 = xagoa 

- - ( 1  + (~,¢ + ~ , i ( ¢ - ( - ) , - 1  + ¢~-), 

P = ½(1 + ( ( ) .  

Continuing the expansion in eqs. (B. 5 ) -  (B. 15 ), the first-order terms yield 

(11) 

o2z,,o = (aB + ~ - ~ -  OnoC;-))Zo,a 

+ 2H~-_)OSZo,a -2H¢o'[)SZo,a +SH~-)~Zo,a, (12) 

~Ho{~ ) = - H e +  ), ~H~ - )  = 2Ho(l -), ~Ho(+ } = 8aB, 

OHo(t +' = -Ho c+), 8H~ +'  = 2Ho {+), 8Ho (+' = ~B- 

By applying ~2 to the first equation and eliminating the H via the second 
set we obtain 

~2~2Z1, a = ~2 (ffBZ0, a ) + ~2 (~rBZ0, a ),  ( 1 3 )  

which immediately integrates to 

~2~2Z l = O2&B(Zo) + ~2CrB(Z0), (14) 
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the first-order LCCE. Since Zo is known and there is a simple Green's function 
for the operator ~2~2 one can write the solution Zi as a sphere integral over 
the data. 

[Note that if (14) is written as 

~2~2Z = O20"B(Z) -1-~2UB(Z), (15) 

and understood to be an equation for Z accurate only to first order, it is 
equivalent to the linearized (con formal) Einstein equations. ] 

With considerably more effort this expansion procedure can be continued, 
and the second-order H eliminated, obtaining the LCCE accurate to second 
order, 

~2~2Z = ~z6"B (Z) + ~ZaB (Z) 

..~ fr ":x; (30~(A,r,,,-'ar,,) 

.-]-O~r,T fr,~(A,r,r,'Zr,r,)dFtdFtt)dFttt. (16) 

An important observation is that the equation is no longer local. It now 
depends on radial integrals along the null geodesics from the field point to 
2 -+. This is a manifestation of  the non-Huygens behaviour of the non-linear 
Einstein equations. It is also an example of  Penrose's zig-zag integrals [8]. 

It is easy to see that at the nth order of  the approximation, the coefficients 
of the Hn are exactly the same as the coefficients of the Hn-t at the ( n -  1 )th 
order. From this observation it follows that H can be systematically eliminated 
at all orders. Assuming that the procedure converges, H could, in principle, 
be eliminated - leaving an exact form for the LCCE. 

4. Conclusion 

We have adopted the point of  view that the (conformal) Einstein equations 
can be rewritten as a single non-local, non-linear angular equation of the form 

~2~2Z = F [Z, data]. (17) 

where the F is a universal functional of Z and the data. We have expressed 
the idea that this equation, the LCCE, which at the start contains no mention 
of space-time itself, nevertheless somehow defines the space-time as the space 
of solutions. The set of solutions (with some as yet unspecified regularity 
condition) are to be parametrized by four "constants of  integration", which 
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become, by definition, the local coordinates x a of the space-time manifold. 
The solutions thus would have the form 

u = Z ( x a , 5 , ( ) .  (18) 

The question is: why should one expect or hope that the LCCE would have 
such a property? First of all one had the same situation with the "good cut 
equation", eq. (4) - it was not clear why it should have a four-parameter set 
of regular solutions. Basically the reason is that the kernel of the 0 2 operator 
is four dimensional. This was used first in a perturbative argument for the 
four dimensionality of the solution space and later to give a rigorous index 
theorem argument [9]. 

Basically we have the same situation here. The kernel of ~2~2 is again 
four dimensional, i.e., Z0 depends on four parameters, x a. In an iterative 
scheme, Z0 continually gets reinserted as the "driving" term for the higher 
approximations, always yielding the solutions as functions of the same four 
parameters, x a. 

This certainly does not constitute a proof of the four dimensionality of the 
solution space - it is only a plausibility argument. One hopes that with an 
exact form for F a proof via an index theorem will emerge. It is perhaps worth 
mentioning that, once the cut function is obtained, i.e., u = Z ( x  a, ~ , - 0 ,  the 
construction of the conformal vacuum metric is a straightforward kinematical 
procedure [7]. 

There is an important caveat to the above remarks that must be stated and 
explained. For the sake of simplicity and clarity we omitted the discussion of 
a serious structural complication in eq. (17) and its perturbative version eq. 
(16). One sees that there are both integrals and derivatives with respect to 
the (as yet undefined) variable r in F.  We will now define r and explain its 
role in the "structural complication". 

Assuming that we know 
u = Z(xa,5,~-), 

we can define co = 15Z (x~; 5, ~-), th = ~Z (x o;, 5, ~ and r = 15~Z (x ~ 5, ~ .  
These four equations can be inverted (for Minkowski space and spaces close 

to Minkowski space), yielding 

x a = x a ( u , w , & , r ; 5 , ~ ) .  

With this relationship, differentiation and integration with respect to r 
becomes well defined, e.g., A r = A,a d-xa/  dr.  

The complication is now clear: the functional F depends on both the r 
derivatives and integrals. These are, however, only defined when the solutions 
are k n o w n .  Equation (17) is thus, in some sense, not meaningful. On the 
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other hand, if a function Z ( x  a, (, ~-) exists, it can be tested to see if it satisfies 
(17). In addition (17) has a perfectly well-defined meaning in a perturbative 
sense: at the nth order of a perturbation calculation the functional F depends 
on the already known n -  1 terms, all of which are known functions of  r. 
Though we do not fully understand eq. (17), it appears to have a meaning in 
a "bootstrap" sense; the solutions Z define the x a and hence r, while the r is 
used to define eq. (17) itself. 

Appendix A 

In this appendix we give a brief review of a slightly unconventional way of  
rewriting the Einstein equations [ 10] and then use these equations as a first 
step in deriving field equations for the holonomy operator. 

We start with the ordinary Yang-Mills equations on an unspecified Loren- 
tzian manifold, for the O(3,1 ) gauge group. In the vector representation, the 
connection Ya~ will have (in addition to the space-time index a) a pair of 
Lorentzian internal indices, i, j ,  which can be raised and lowered with the 
(internal) Minkowski metric so that the connection will be antisymmetric in 
these internal indices and hence can be decomposed into a self- and anti-self- 
dual pair, i.e., 

~aiJ .-~ ~(a + )ij .q_ ~)(a--)iJ, 

where self- and anti-self-dual are defined by 

(A.1) 

yC:t:)ij = 7aij ~: 7aiJ (A.2) 

and duality by 
~*ij l _ij  ..kl a = ~ k t r a ,  (A.3) 

where eOkt is the alternating symbol with ~0t23 = - - I .  

The curvature tensor, the Bianchi identities and the Yang-Mills field equa- 
tions then also decompose into the (internal space) self- and anti-self-dual 
parts, i.e., there is no coupling between the self- and anti-self-dual parts. One 
has (suppressing the internal indices) 

= + 

where the self- and anti-self-dual curvatures are constructed from the self- and 
anti-self-dual connections. The Bianchi identities become 

Vt Fo l + + F ll = 0, (A.4) 
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and the Yang-Mills field equations are 

203 

~a  Fa5~ ..}_ [~)-t-a, Fa~] : 0. (A.5) 

One is thus dealing with two independent Yang-Mills connections and 
fields. It is possible to further decompose each of the two curvature tensors 
now on the space-time indices, into its space-time, self- and anti-self-dual 
parts, where we have used the existence of the Lorentzian metric. We will 
refer to space-time dual statements as left dual and internal dual statements 
as right dual. The full curvature then has four terms, 

(i) the left and right self-dual part, +Fa~ ; 
(ii) the left anti-self-dual and right self-dual part, -Fa~ ; 
(iii) the left self-dual and right anti-self-dual part, +Fa~; 
(iv) the left anti-self-dual and right anti-self-dual part, -Fa~. 
Parts (1) and (2) are coupled as are parts (3) and (4), in the sense that 

they depend, respectively, on the 7 + and ~,-. If we now make the algebraic 
assumpt ion  that the curvature parts, (2) and (3), both vanish, i.e., 

- F ~  = 0 and +Fa~ = 0, (A.6) 

then we are left with two curvatures, +F~ and -Fa~ curvatures, coming, 
respectively, from the two independent connections. This algebraic assumption 
has automatically imposed the Yang-Mills field equations on the connection. 
The field equations in each case are identical to the Bianchi identities, i.e., 
eq. (A.5) follows from (A.4) after dualing. We are thus dealing with two 
Yang-Mills fields, a (left) self- and a (left) anti-self-dual Yang-Mills field. 

To this system we now add another variable, namely a space-time or- 
thonormal tetrad 2/, compatible with the unknown Lorentzian metric, i.e., a 
soldering form to be used to connect the space-time indices with the internal 
indices, e.g., Ai2/ = Aa. The role of 2 / will be to connect or relate the two 
(originally) independent connections 7 + and ~,- to the space-time geometry. 
This relationship is given by the Cartan structure equation 

Vta2ibl  = (7(+)i jr a + ~)(-)ij[a)2ib] . (A.7) 

Equations (A.6) and (A.7) are equivalent to the vacuum Einstein equations 
with cosmological constant [ I 0 ]. 

We now introduce the holonomy operator associated with the SO(3,1) 
connection ~'a introduced in eq. (A.I). In symbolic form this operator is 
defined as 
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where C is an arbitrary closed path with an initial point in space-time and 
P exp denotes the path ordered exponential. 

Note that this operator is defined on the space of  loops, an infinite- 
dimensional space. We will, however, restrict ourselves to two special six- 
dimensional subspaces of loop space. Essentially these loops are the infinites- 
imally narrow, long triangles with apex at x a, bounded by two neighbouring 
null geodesics and connected by the geodesic deviation vector at 2 -+ . 

More precisely, we denote by e.~((,(-) the null geodesic that starts at x a 
and ends at the ((,(-) generator of  Z +. We introduce two types of  paths, 
defined as the infinitesimal triangles /Xx((,(-) [and ~-x((,C)] formed by 
two neighbouring geodesics (~ ( ( , ( )  and £.v(( + d(,(~ [and e .x( ( ,~  and 
(~- ((, (-+ d~-) ] and connected at I + with the connecting vectors M a [and ~-a] 
on I +. Of  course /xx and Ax both lie on the null cone Cx. Since these paths 
are very narrow, the holonomy operators associated with them will be the 
identity operator plus a correction term for each of them. It is the correction 
terms that are referred to as the differential holonomy operators associated 
with the paths/xx ((, (-), and ~-x((, C). We denote them by 

H ( x a , ( , O  d(  , n ( x a , ( , ¢ )  d(. (A.8) 

A second basic variable, the light cone cut function Z (x  a, ( , -0  (see section 
2) contains or codes the conformal information of  the underlying conformal 
structure. It is defined as the intersection of  the light cone emanating from an 
interior point x u and I +, the future null boundary attached to an ASST. 

One can show [7] that all the components of the conformal metric are 
explicit functions of  

A ( x a , ( , O  - O2Z. (A.9) 

As we will see below, Z and H must be coupled if the holonomy operator 
is associated with the space-time metric connection. However, at this point 
it is convenient to think that H is associated with an independent SO(3,1) 
Yang-Mills connection whereas Z (x a, (, ()  is assumed to be a known function 
that describes the conformal gravitational background. 

One shows [4], using a non-abelian version of Stoke's theorem, that H is 
related to the Yang-Mills curvature tensor in the following way, 

/Y H = ( F ~  + F ~ )  faMOds  = h (+) + H (-) ,  (A. 10) 

/Y H = (F~  + F ~ )  f a M b d s  = H {+l + h I-I , (A.II )  

where H and h with the plus and minus signs denote the self-dual and anti- 
self-dual parts of H and H, and are defined in the obvious manner from the 
integrals of the F ' s  with the plus and minus signs. 
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One can invert these equations and reexpress F ~  and Fa~ in terms of  H 
and H [4]. This relation is symbolically written as 

F~b = Fab (H( - ) ,h t - ) )  (A.12) 

with an analogous equation for Fa~. If we now impose eq. (A.6), i.e., + F ~  -- 0, 
on eq. (A.12), then H (-) and h (-) are no longer independent variables. They 
become related by [4] 

+Fab(H(-),h (-)) = 0, (A.13) 

or in detail, 

[q-lh,(~-)],r + 5[q-lA,~h,(~-)].~ = [q-~A,~/-/~-)],r + f i [q - ' / /~ - ) ] ,~ ,  (A.14) 

where r denotes a radial parameter defined by Z on the null geodesic, ~ = 
( x / q -  1)/A,r, q = 1 -A,rA, r, and A(x,  ( , 0  is the function introduced in eq. 
(A.9). Note that all these quantities are obtained from the assumed known Z.  

One can explicitly solve this equation for h (-) by quadratures and write the 
solution as h t-) = J[H(- )] ,  a linear functional of H t-).  In this sense, we 
consider h t-) as derived from H t-), with H t-) our basic variable. 

Finally, we address the issue of  obtaining field equations for H t-).  The 
idea is to integrate the Bianchi identities, which become field equations by 
virtue of  (A.6), on the infinitesimally narrow but infinitely long volume AV 
bounded by a cap on Z + and the triangular regions dx((,~-), d x ( ( , ( - +  d ~ ,  
Ax((,~-) and A-,-(( + d ( , ~  (i.e., a pyramid-like figure with apex at x aand 
base at infinity). Integrating (A.4) over AV, we obtain [4] 

0H t-) - 5(h (-) -AR--(-))+ [H(_ ) - AtR-),h (-) --A(R - ) ]  = 0, (A.15) 

with 

- )  = A ( - ) ( Z , ¢ , - ( )  

and A t-) (u,(,(-) the "free data" at 2 "+. That is, AR is the restriction of  the 
Yang-Mills data to the light cone cut. The idea then is to find solutions of  this 
equation that are regular on the cut. The non-Huygens nature of  the original 
field equations is explicitly exhibited in h (-), which is an integral functional of  
H t-). Equation (A. 15) is equivalent to the anti-self-dual Yang-Mills equations 
for an O(3,1 ) gauge group on an asymptotically simple background given by 
Z(x,(,(). 

We now assume that H is the holonomy operator associated with the metric 
connection of the ASST and that the metric of the space-time satisfies the 
vacuum equations. It is well known [11] that for ASST the spin coefficients 
have a very simple asymptotic form, with only one complex degree of  freedom. 
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Thus, the free data A, which are an asymptotic component of  the connection 
y, assume a very restrictive form, given by A = A c+) + A (-) with 

(°°°1 / Oo o _ o 

ba 0 0 

and 

(A.16) 

( 000 0 
Aq)t- = 0 0 ' (A.17) 

-1  0 

with o- B the gravitational data [4]• On the other hand, these equations are 
clearly incomplete since the cut function that would enter into the equations 
for H should be obtained from knowledge of  the very metric we are trying to 
solve for. 

The idea then is to relate the two variables H and Z. This relationship 
completes our set of equations equivalent to the vacuum Einstein equations. 

A sketch of  the derivation of  this relationship begins with the equations [4] 

5eka = ( H k j - A ~ j ) e  j ,  ~eka = ( - H k j - - A ~ j ) e ~ ,  (A.18) 

a requirement that the null space-time tetrad e~ is parallel propagated from 
2 .+ to the field point x a along a null geodesic ex (~, ~-) using the Yang-Mills 
connection y + + 7-.  The next step is to relate this tetrad to the natural gradient 
basis 

(z,~, ~z,~, ~z,~, ~z,~ ). 
This is done by choosing one of the "legs" as 

e 0 = e a : Z ,a .  (A. 19) 

It immediately follows from eq. (A.16) that 

0 i ~JZ, a = ma + H i e  a : m~ - HoIG + H l + m a  + H I - & a ,  (A.20) 

and 

~ Z , a  m l~ a - [ - - n ° i e i  = i~l a - n 0 1 e a  -.[-HI+ ma + - H l - & a .  (A.21) 

Taking ~ of  (A.20) or ~ of  (A.21) and using (A.18) yields 

~J'~Z,a = na - ea -t- ( $ H l i  - - n - i  -b H l k  ( H - -A )ki  )ei  a. (A.22) 
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Equations (A. 19)-(A.22) are the needed relationship between the gradient 
basis and the null tetrad. This allows us to go back and forth between these 
two bases. We now address the final issue of relating Z and H. Observe 
that if we take a of (A.20), use (A.18), and eliminate the null tetrad via 
(A. 19)- (A.22 ), we obtain an equation solely involving Z (and derivatives) 
and H. (In a similar form the conjugate equation is obtained.) This equation 
is explicitly given in the next appendix. 

Appendix B 

We present here our final set of equations in full detail. They are given 
in terms of Z, H(*) and h(*) bearing in mind that the latter is expressed 
completely in terms of H(*). 

First recall that 

H.. = A!?’ + H!-’ 
‘I ‘J II ’ (B.1) 

or explicitly, 

R.. = H!.+’ + j&T’ 
‘J ‘J ,I ’ U3.2) 

Q?-’ = 
II 

0 ;WOI + H+-1 0 Ho- 
-#fo, + H+-1 0 HI, 0 

0 -HI+ 0 #Jo, + H+-1 ' 
-Ho- 0 -; (Ho, + H+- 1 0 1 

j-J?-’ = 
lJ 

( 

0 :WOI - H+-1 Ho+ 0 
-;Wo, - H+-1 0 0 HI- 

-Ho+ 0 0 -;(Ho, -H+-) ’ 
0 -H,- ;Wo, -H+-1 0 1 

and their conjugates. 
Since the symbols ( + ) and (- ) represent self-dual and anti-self-dual indices 

in the internal space, several components of (H(-), h(-), H(+), h(+) ) are equal 
to zero. Using a null basis in the internal (i, j) space and denoting the range 
of i, i by (0, 1, + , - ), the non-trivial components are given by 

(H;,‘, Hd;‘, H,(I)), (h(p, h&), h,‘I’ ) 9 (J3.3) 

VI;,+‘, H,‘?, Hi;’ 1, (h;:‘,h;?,q), 03.4) 

with h’+_’ = h(+) + o, and Hl? = -Hd,‘. Note that, when the internal indices 
are raised or lowered, the 0 goes into 1, and the + into - with a change in 
sign. Similar changes exist for the other two components. 
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The explicit form of the self-dual SO(3,1 ) equations (A.15) for H in terms 
of those components are: 

- _ / 4 ( - ) h ( - )  0Ho'i' Oho'7' + - - o +  . . -  -ho'V'H~-'  
+ H ' o ; ' - h l - _ ' - a ~ n ~ - ' =  O, 

~H(- '  - 0hl - '  914 ' - 'h¢- '  -- - - " ' ' 0 1  " ' l - -  + 2ho(7)n~ - ' -  2Ho(I -) 

~Hot+' _ Oho~+ ' 9 r # - ' h ( - '  9h(- ' r4(-)  - - ' " 0 +  " o t  + ' " o +  " '01 

= 0 ,  

(B.5) 

(B.6) 

(B.7) 

and 

_ t 4 ( + ) h ( + )  _ h ( + ' H ( + )  OHo'?' ~h~, +' + - o -  , ,+  ,.o- --~+ 

+ H0(+, _ h ( + '  - u (+ )  - " 1 +  - -  O B ~ I I +  = 0,  

0H(+, - ( + , _  9/r4(+'h(+' 2h~+'14t+' _ 2H0{l +' - O h l +  - " 0 1  - 1 +  + " ' I +  

OHo,_+, _ ~ho~_+, _ 2Mo '_+%7,  + 2ho'_+'MO'l + '  

= 0 ,  

+ 2h~ +' + 2/rBH0{l +' = 8&B, 

where we have used eqs. (A.16) and (A.17), the explicit form of A. 
The equations relating H and Z are 

( B . 8 )  

(B.9) 

(B.IO) 

0 2 Z a  2H(-)  rh(+) , = - t , , l +  + l ] n a  

+[0hI+)_2Ho{~ -) 9h'+)aq (-) [OH(_7 ) 9 r4( - 'h '+) l  - - ~ " 1 +  " 'Ol ]ma + - - - ' ' 1 -  "Ol jma 

' + '  ~'+' )  - H~:'  - o h g '  - 0~o'C' +[(bB+h 0- ) ( l+ , . t+  

+ ( h ~  ") + H0tl)) 2 + H~- 'HCo+)]ga ,  (B. I I )  

with 

ga = Z,a, (B.12) 

ma = OZ, a - H ° o Z ,  a - H ° + m a  - H ° - & a ,  (B.13) 

&a = ~Z,a - -H°oZ,  a - -H'°+ma - - H ° - & a ,  (B. 14) 

na = O~Z,a + Z,a - (-H+i dr ~HOi + H ° k ( H -  A)ki)eio. ( B . 1 5 )  

These last equations are simply eqs. (A. 19)-(A.22), which have been reorga- 
nized in a fashion more suitable for a perturbation expansion. 

We thank L. Mason for many stimulating and enlightening discussions. 
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